A paper published today (May 10) in Nature states that the process of
converting plutonium to MOX (mixed oxide fuel containing uranium and
reprocessed plutonium) for use in reactors is costly and risky. Using in
fast breeder reactors does not address the central issue of reducing
the quantum of separated plutonium. So should India be taking this
route?
Dr. Anil Kakodkar, former chairman of the Atomic Energy Commission, explained to R. Prasad, in an email,why India should continue with the fast breeder route for disposing of the man-made element.
The authors argue that direct plutonium disposal is a “less costly
and less risky method” compared with recycling plutonium and using it in
reactors? Your comments.
In a world where direct permanent disposal of even spent nuclear fuel
has remained an unresolved issue for several decades with no sign of its
resolution in sight and an estimated used uranium fuel inventory that
has piled up to a level in excess of 270,000 tons as per WNA [World
Nuclear Association] estimate, above argument is questionable.
Clearly direct permanent plutonium disposal is a more complex matter as
compared to disposal of spent nuclear fuel. On the other hand, there is
today commercial scale experience in France where nearly entire spent
fuel arising is recycled as MOX fuel in PWRs [pressurized water
reactor]. In India, we have adopted the policy of recycling right from
the beginning.
They state that recycling plutonium is “dangerous.” Your comments
“Direct permanent plutonium disposal” is a greater long term danger
since one is creating a potential “plutonium mine” which can be open to
uncontrolled access after a long time when most of radioactivity would
have decayed out.
On the other hand, it is a superior option to consume plutonium in a
controlled manner for producing much needed energy and permanently
dispose of only proliferation irrelevant radioactive materials. There is
sustained and successful commercial experience on reprocessing and
plutonium recycling in France. In India too, we have significant and
successful industrial scale experience on reprocessing and plutonium
recycling.
Is it right that both kinds of disposal — direct disposal after
immobilizing plutonium, and disposing MOX spent fuel — “require about
the same repository space”?
May be. However in the latter case one would have extracted much larger
energy and plutonium rendered more proliferation resistant. Thus
repository space needed per unit of energy produced would be much less.
It is worth noting that even MOX spent fuel has been reprocessed on a
trial basis.
Will we not end up with more plutonium by converting plutonium to MOX
fuel and using in fast breeder reactors? Will we not reach a stage when
the amount of plutonium produced is more than what we can use?
The safest place for storing plutonium is in operating nuclear reactors.
Reprocessing can be always be adjusted to just meet the demand. For a
country like India where our per capita electricity use is 15-20 times
lower compared with industrialised countries, this question is
irrelevant.
While the use of thorium will not result in plutonium, will the U233
that is produced be more difficult to handle (since U233 is a gamma
radiator unlike plutonium)?
Surely U233 is more difficult to handle if one resorts to technology
similar to what one uses in the case of plutonium. That is where we need
to adopt technologies appropriate to handling U233. By the same token
U233 use is much more proliferation resistant. We also need to recognize
that when used with thorium, destruction of fissile plutonium is much
deeper.
The authors have quoted a year 2000 estimate that recycling plutonium
through the MOX route adds about $750 million every year in the case of
France? That will mean that power produced by France by recycling
plutonium has become expensive. Will that be the same case in India too?
As I understand it, in France, cost of MOX and uranium fuel on per unit
energy basis is similar. Even if you take the above number to be true,
this corresponds to less than 9 paisa per unit. I think this is not too
much recognizing the fact that this avoids a potential plutonium mine.
In India, the experience is that we practise high technology at a much
lower cost.
They have also cited the example of the U.S. where the cost of
recycling through the MOX route has increased from $4 billion in 1999 to
$13 billion now. Your comments.
I cannot comment on this since escalation in cost is related to issues of project management.
No comments:
Post a Comment